Monitoring and Inhibiting MT1-MMP during Cancer Initiation and Progression

نویسندگان

  • Sonia Pahwa
  • Maciej J. Stawikowski
  • Gregg B. Fields
چکیده

Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a zinc-dependent type-I transmembrane metalloproteinase involved in pericellular proteolysis, migration and invasion. Numerous substrates and binding partners have been identified for MT1-MMP, and its role in collagenolysis appears crucial for tumor invasion. However, development of MT1-MMP inhibitors must consider the substantial functions of MT1-MMP in normal physiology and disease prevention. The present review examines the plethora of MT1-MMP activities, how these activities relate to cancer initiation and progression, and how they can be monitored in real time. Examination of MT1-MMP activities and cell surface behaviors can set the stage for the development of unique, selective MT1-MMP inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Metalloproteinase Expression Significance on Oral squamous cell carcinoma Clinical Outcome

Introduction:Oral Squamous Cell Carcinoma (OSCC) is an invasive neoplasm with a high prevalence. Matrix Metalloproteinase (MMP) has been thought to play an important role in both the invasion and metastasis of tumors. The aim of this study was to explore the significance of MMPs expression in clinical outcome of these patients. Materials:The most recognized data Bases such as PubMed, Google sc...

متن کامل

Expression of membrane type 1 matrix metalloproteinase is associated with cervical carcinoma progression and invasion.

Membrane type 1 matrix metalloproteinase (MT1-MMP) is frequently expressed by cancer cells and is believed to play an important role in cancer cell invasion and metastasis. However, little is known about the role of MT1-MMP in mediating invasiveness of cervical cancer cells. In this study, we examined MT1-MMP expression in 58 primary human cervical tissue specimens, including normal cervix, low...

متن کامل

Angiogenesis, Metastasis, and the Cellular Microenvironment Oxidative Stress and Prostate Cancer Progression Are Elicited by Membrane-Type 1 Matrix Metalloproteinase

Oxidative stress caused by high levels of reactive oxygen species (ROS) has been correlated with prostate cancer aggressiveness. Expression of membrane-type 1 matrix metalloproteinase (MT1-MMP), which has been implicated in cancer invasion and metastasis, is associated with advanced prostate cancer. We show here that MT1-MMP plays a key role in eliciting oxidative stress in prostate cancer cell...

متن کامل

Oxidative stress and prostate cancer progression are elicited by membrane-type 1 matrix metalloproteinase.

Oxidative stress caused by high levels of reactive oxygen species (ROS) has been correlated with prostate cancer aggressiveness. Expression of membrane-type 1 matrix metalloproteinase (MT1-MMP), which has been implicated in cancer invasion and metastasis, is associated with advanced prostate cancer. We show here that MT1-MMP plays a key role in eliciting oxidative stress in prostate cancer cell...

متن کامل

Pancreatic cancer cells respond to type I collagen by inducing snail expression to promote membrane type 1 matrix metalloproteinase-dependent collagen invasion.

Pancreatic ductal adenocarcinoma (PDAC) is characterized by pronounced fibrotic reaction composed primarily of type I collagen. Although type I collagen functions as a barrier to invasion, pancreatic cancer cells have been shown to respond to type I collagen by becoming more motile and invasive. Because epithelial-mesenchymal transition is also associated with cancer invasion, we examined the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014